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Abstract--The dynamic structure and physical properties (rheological, magnetic) of magneto- 
rheological suspensions are described in terms of a stationary model, according to which a 
suspension in a magnetic field represents a system of ordered non-interacting ellipsoidal aggregates 
oriented at some angle to the flow. The model is verified experimentally by measurements of 
steady-state effective rheological and magnetic characteristics. 

1. I N T R O D U C T I O N  

One of  the direct influences on the mechanical properties of  a fluid is the magneto- 
rheological effect (MRE). In this respect it represents a reversible change (increase), due 
to an external magnetic field of  effective viscosity of  a noncolloid suspension of magnetic 
particles. Such suspensions are normally called magnetorheological suspensions (MRSs) 
and usually structural transformations in the dynamic system dispersed 
medium-magnetized dispersed phase are responsible for their complicated rheological 
specificity (Harvey 1953; Bibik 1981; Shulman & Kordonsky 1982; Batchelor 1976). In a 
magnetic field other physical properties of MRSs are sensitive to a structure state; in 
particular, thermal and electric conductivities undergo essential changes. 

Descriptions of the MRE (Shulman & Kordonsky 1982) have been presented in terms 
of  representations conventional to the theory of the rheology of dispersed systems, 
according to which an increase in the suspension's viscosity is attributed to additional 
energy consumption for destruction of  structural elements generated by the field. Since in 
classic theories a structural element is not identified with real physical characteristics of  
the system, such physical characteristics as magnetic strength and magnetic properties of  
a dispersed phase are introduced by considering a chain of magnetic dipoles as a structural 
element. 

Apart from predicting the viscoplastic character of the flow these models do not allow 
determination of other important physical properties necessary for describing transfer 
processes in MRSs. 

The theoretical approach described below is based, not on the structural rheology but, 
on the current statistical theory of  suspensions that employs certain physical characteristics 
of a microstructure. Grounded experimentally (by MRS structure diagnostics involving 
simultaneous measurement of its macroscopic characteristics, i.e. the magnetic and 
rheological ones), a stationary model is considered, according to which a suspension 
represents an ordered system formed by dispersed-phase particles and oriented at some 
angle to the shear flow of non-interacting ellipsoidal aggregates. The increase in viscosity 
is due to additional energy consumption by a carrier medium passing these structural 
elements. The level of mechanical energy dissipation (apparent viscosity) is controlled by 
variation of  the given MRS microstructure (elongation of aggregates and their angle of 
orientation), the external magnetic field strength or the shear rate. Detailed information 
on a dynamic microstructure is then employed for defining the main physical properties, 
i.e. rheological, thermophysical and magnetic, of the MRS. 
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2. M R S s - - G E N E R A L  COMMENTS 

MRSs represent stable suspensions in a carrying fluid containing non-colloidal magnetic 
particles of size 10-4-10 3 cm. For these dispersed systems, Brownian movement is of no 
importance. Depending upon the type and concentration of the dispersed phase, aggre- 
gative and sedimentation stability of MRSs is provided by one of the following methods. 

Course-dispersed small-concentration systems are stabilized by the introduction of 
additives, forming a protective colloidal structure in the bulk of the carrier. The strength 
of this structure should be such as to prevent sedimentation and spontaneous irreversible 
coagulation of magnetic particles, on the one hand, and to allow reversible thyxotropic 
transformations and not to inhibit the system structurization in the magnetic field, on the 
other. 

In the case of sufficiently fine dispersed concentrated suspensions this stability may be 
achieved by introduction of surfactants and formation of a spatial structure just from 
ferromagnetic particles. Stability is a necessary but still insufficient condition of the MRS's 
existence as an object of a hydrodynamic system. Outside the field it should possess 
satisfactory fluidity and recover quickly after ceasing shear flow. Some peculiarities in the 
mechanical properties of MRSs are brought about by the nature of the dispersed-phase 
material, viz. magnetosoft or magnetorigid (Shulman & Kordonsky 1982). 

The experimental results below have been obtained with suspensions of carbonyl iron 
magnetosoft powder R-10 (multidomain spherical particles, dm ~ 3.5/~ m), whose volumet- 
ric concentration constitutes 2, 4, 6, 8 and 10%. The hydraulic fluid AMG-10 served as 
a continuous medium. Gel-forming additives were introduced into the medium to ensure 
stability of the system. 

3. MAGNETIC CHARACTERISTICS  AND STRUCTURAL AND 
R H E O L O G I C A L  PROPERTIES OF MRSs (EXPERIMENT) 

Interdependence between the rheological properties of the material and its structure is 
generally stated nowadays. In magnetic rheology a system approach has been developed, 
beginning with the first papers dealing with the effects of an increase in viscosity of 
dispersed ferromagnetics in a magnetic field (Harvey 1953; Bibik 1981). 

In order to get information on a detailed MRS structure use has been made of optical 
and magnetic measurements electron microscopy and X-ray diffraction analysis. It has 
been found that an external magnetic field imposed on a magnetic suspension initiates the 
formation of threads (fibres, chains, aggregates etc.) from the dispersed-phase particles 
which are spread throughout the field. However, all these data have been referred, as a 
rule, to static systems at rest. Their use is of no help for a qualitative description of the 
complex dynamic process which represents MRS strain. As is shown below, as the shear 
rate increases there occurs disintegration of aggregates (chains), initially grown through 
the whole cross-section of the flow, in such a way that a certain set of structural elements 
and the definite system morphology, i.e. mutual arrangement of elements in space, 
correspond to each combination of the prescribed parameters (viscosity of the continuous 
medium, magnetic properties of the particles, magnetic strength and strain rate). 

A study of the dynamic structure of MRSs encounters some difficulties. The present 
paper is an attempt to implement MRS microstructure diagnostics by simultaneous 
measurement of their macroscopic, i.e. magnetic and rheological, characteristics. 

3.1. Experimental Procedure 

With the aim of achieving adequate confrontation of an effective increment of MRS 
viscosity in a magnetic field and its magnetic characteristics for pure shear strain an 
experiment has been conducted according to the following scheme (figure 1). 

Coaxially-cylindrical rheometric cells (1 and 2) with a bell-type rotor were placed in a 
radial magnetic field initiated in an annular gap of an electromagnet (3 and 4), with the 
latter being connected to a current source (Shulman & Kordonsky 1982). The cell elements 
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Figure 1. Schematic drawing of the experimental setup: 1, bell; 2, fixed cylinder; 3, electromagnet 
winding; 4, magnetic circuit; 5, current source; 6, Hall probe; 7, 9, digital induction meters; 8. MRS. 

were made of non-magnetic material. On an external side of  fixed cylinder 2 two miniature 
Hall probes (6) were mounted which were full-wave circulated in opposition and connected 
to digital meter 9. MRS 8 is poured into the cell so as to have its "mir ror"  between the 
Hall probes, with one of them (the lower) being in a zone of magnetic flux action across 
the MRS, the other (the upper) being in an air gap. The total signal at the meter is 
proportional  only to the magnetic induction increment AB due to the presence of the MRS 
in the magnetic clearance. Meter 7 also reads the induction in the air gap. A calculation 
diagram of the experiment concerned with the measurement of  magnetic MRS properties 
is presented in figure 2. At the point in the gap where there is no suspension (above the 
suspension level), the law of  total current for a magnetic circuit is written in the form 
(Atabekov 1969) 

H . I  = F ,  

where Fis  the magnetization force and H is the field in the gap above the suspension. Since 
H = B / #  o, then neglecting the losses in the magnetic circuit the magnetization force can 
be specified as 

B . l  
F -  

Ifo 

Here /~0 is the magnetic constant with B being the induction in the gap above the 
suspension. For  the part  of  the gap containing the suspension, the total current law is 
written as 

Hh' lh + Hs" l~ = F 

J / 

/ / / , 

B s 

/ / / 

~h 

H,B 
/ / / 

• / / 

Figure 2. Calculation diagram of the experimental measurements of the MRS magnetic properties. 
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or in the form 

Bsth 8ds B' t  
- -  - -  - - ,  [ 1 ]  

#a #0# #0 

where Bs is the induction in the part of the gap containing the suspension and # is the MRS 
permeability. With reference to [l] we find 

B. l  
B s - - - -  

lh + Is~#" 

The measured increment in the induction due to MRS loading reads 

1 
l - - - -  

# 
AB = B s -  B = Blh l '  [2] 

÷ 
ls # 

wherein lh is the middle line length of magnetic induction of a section occupied by air at 
the lower probe and ls stands for a section occupied by the MRS. With the MRS 
permeability # being known, one can calculate the field in the air gap involving the 
suspension: 

l;/ 1 ,3, 
Hh----B-2=K#0 1+  --1 

Expression [2] allows easy evaluation of the magnetic permeability (susceptibility) of the 
MRS and calculation of its magnetization for each field H a . 

Rheological characteristics are determined by a conventional technique involving torque 
measurement on a rotating cylinder. So simultaneous measurement of the effective 
rheological and magnetic characteristics of an MRS subjected to shear stress is imple- 
mented. 

3.2. Magnetic Characteristics and Structure of MRSs 

A specific feature of an MRS as a magnetic material is the mechanical mobility of the 
carriers of a magnetic moment, i.e. particles of the dispersed phase. Such systems undergo 
magnetization to a considerable extent, due only to rearrangement (ordering) of their 
structure. This means that a definite structure of magnetic particles corresponds to each 
level of magnetization. The interdependence between the magnetic properties of an MRS 
and its microstructure is demonstrated well by the data presented in figure 3. A ballistic 
method has been employed to determine the magnetization of a model dispersed system 
consisting of carbonyl iron particles (10 vol%) suspended in a matrix capable of modifying 
its aggregative state upon heating. When the matrix is in a solved state, the particles are 
distributed uniformly in the bulk and do not move, i.e. magnetization is not accompanied 
by structurization. This situation may be treated as a model of an ultimately destroyed 
structure whose magnetization process is shown by curve 2 in figure 3. Curve 1 shows the 
magnetization of the material preheated in a strong magnetic field up to a temperature 
exceeding that of a phase transition and then cooled. This is the way the ultimately oriented 
structure has been modeled. 

In the theoretical presentation of the magnetic characteristics of suspensions with a small 
content of magnetic particles in the bulk, consideration is given to random isolated 
magnetosoft particles whose mutual effect is accounted for in a dipole-dipole approxi- 
mation by the Lorenz-Lorents method (Landau & Lifshits 1957; Dukhin & Shilov 1972). 
In thig case the macroscopic characteristics are found by averaging of the macroscopic 
quantities with respect to the position and orientation of the particles. As applied to MRSs, 
of greatest interest are the ordered systems in which structural elements are oriented at 
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Figure 3. MRS microstructure effect on its magnetic 
properties: 1, MRS is oriented in the magnetic field; 

2, not oriented. 
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Figure 4. The ellipsoid in the magnetic field. 

the same angle towards the field. In a general case, magnetization of a suspension of  
ellipsoidal particles (aggregated) is defined as 

/ i -  xa/a~° GdP, [4] 
1 "It- Karl  i 

wherein/~ is the suspension magnetization along the ith axis (in a system of coordinates 
related to a particle); x, is the aggregate susceptibility, #0 is the magnetic constant, n~ are 
the demagnetizing factors along the corresponding axes, G~ are the vector components of 
an effective field acting on the particles and ~p is the concentration of particles. For  a 
cartesian system of coordinates in which the z-axis coincides with a long axis of an 
aggregate (figure 4) we have: 

l - e 2 ( l + e _ 2 e )  and n x = n y = ½ ( l - n ~ ) ,  [5a] 
n= = --~S-e3 In 1 - - e  

where 

a [5b] e = x / 1 - - r [  2 and r e = ~ ;  

here a is the semimajor axis of an ellipsoidal aggregate and b is the semiminor axis. 
The field strength in the suspension (in the system of  coordinates related to a particle) 

reads ( ' 
H,=G, 1 3 l +x.n,/" [6] 

With reference to [4] and [6] we derive a formula for the susceptibility component of the 
suspension along the field: 

Gz sin ~ G v cos 

1 + Kan. 1 +/,can ), 
~:s = '~aq~ ~ [ 7 ]  

G~sinct 1 3(l+x,n~)_l-G,.cosg 1 

where ct is the angle between the long particle axis and the direction perpendicular to the 
field and the vector components of  the effective field are as follows: 

.,4 4 COS 0~ Q =  
A3Aj sin2~ + d2A4 cos2 ~ He 
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and 

A 3 sin :~ 
= He; G: A4A2 cos2 ~ + A3A I sin2 ~ 

here H e is the external magnetic strength, 

A ~ = I + I + G n ~  3 ' A 3 = I  l + G n y  

Xa 2~p and m 4 = 1 ti~ ~o 
A 2=l+l+xan~m 3 l+Gn. .3" 

[8] 

The initial susceptibility of the system of uniformly volume-distributed spherical particles 
is determined from [7] as 

3Xp~p [9] 
xc 3 -F tip -- 3tipg0 

wherein tip is the initial susceptibility of a particle. The values of initial susceptibility found 
by this formula for the suspensions studied, particularly in the case of small concentrations, 
appeared to be rather close to those obtained experimentally for the destroyed structure 
(see table 1). 

In the calculations the quantity tip has been assumed to be equal to 50 (Tolmassky 1976). 
The matter is more complicated when seeking the initial susceptibility of a structurized 
MRS consisting of a system of anisodiametric aggregates. For a system of elongated 
monolithic ellipsoidal particles this quantity may be defined by [7] as 

tia (pa 3Ka (pa 
G = - -  = • [ 1 0 ]  

1 Ka~°a 3 - -  tia(Pa 

3 

An aggregate formed in this field is not monolithic but consists of ferromagnetic particles 
positioned very close to each other. Limiting packing of  spherical particles corresponds 
to their concentration (60-70% of the aggregate bulk). Taking into account the fact that 
the particles are well-wetted with the continuous medium and, therefore, possess a 
solvation jacket which hinders their being in close contact, the volumetric particle 
concentration in the aggregate amounts to 0.4q3.6. This means that the concentration of 
aggregates in the MRS is (~0 a "~ ( p / ~ b ,  where ~b indicates the degree of filling of the aggregate. 
On the other hand, [10] is valid only for elongated ellipsoids with a long axis/cross-section 
ratio t> 10. In this case the susceptibility does not depend on ellipsoid length. The following 
experiments show that a chain aggregate is quite consistent with such a model. A 
vibromagnetometer has been used to determine the magnetization of a system assembled 
from a different amount of equal-sized steel balls forming a chain along the field. The balls 
have been in close contact or at a distance equal to their diameter. It turns out that the 
magnetization of  such a system increases with the amount of balls and attains its limit with 
the total length of the sample equal to 7-8 diameters of the ball. 

All this allows use of [10] for evaluating the susceptibility of oriented MRSs. The 
quantity ~,, found in this way, was equal to 5 at q5 = 0.5. This is appropriate for the 

Table 1. Initial MRS susceptibility 

Destroyed structure Oriented structure 

0.1 0.394 0.47 1.1 
0.08 0.292 0.35 0.9 
0.06 0.204 0.24 0.62 
0.04 0.127 0.15 0.47 
0.2 0.06 0.09 0.25 

(ff /~calc Kexp Kexp 
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Figure 5, Magnetization curves ofcarbonyl iron-based MRS: 1, q) = 0.02; 2, ~ = 0.1)4; 3, q) = 0.06; 
4, ~ = 0 . 0 8 ;  5, q~ = 0 . 1 .  

susceptibility values obtained for a carbonyl iron R-10-based magnetodielectric represent- 
ing a compressed ultimately concentrated system with tp ~ 0.6 (Tolmassky 1976). 

Magnetization curves of  all the tested (at rest) MRSs are shown in figure 5. The dotted 
curves indicate measurements made by the procedure described in section 3.1, while solid 
lines represent the data of  reference tests performed on a standard ballistic magnetometric 
setup. Any departure from the ballistic curves was less than 10%. The data present 
evidence that the magnetization curves in their initial stages approach the linear ones, up 
to field strengths of H = 30 kA/m. Therefore, the materials tested in this region exhibit 
constant susceptibility (xs = I/H = const). Besides, the initial susceptibility of MRSs 
practically increases linearly with concentration. 

Henceforth all the experiments and calculations have been conducted only for the initial 
susceptibility region. As follows from figure 6 the susceptibility is rather responsive to 
changes in the structure under shear flow. The figure presents the initial susceptibility xs 
of each tested MRS as a function of the shear rate ~ at field strengths of  H = 24 kA/m 
( ) and 35.3 kA/m ( - - - ) ,  respectively. For MRSs at rest the susceptibility does not 
depend on the field, and in shear flow the situation is reversed: the susceptibility falls with 

1.1 I ~  
10 
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~ ' - ~ "  - -  - -  --o- 

0.7 - "~x"'~ ~ zx . . . . . . . . .~  ~ 
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Figure 6. Initial MRS susceptibility vs shear rate: 
1, tp = 0 . 1 ;  2, ~ =0 .0 8 ;  3, ~ =0 .0 6 ;  4, ~a =0 .0 4 ;  

5, tp = 0.02. 
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Figure 8. Shear stress increment vs shear rate, (a)  H = 2 4 k A / m  and (b) H = 35.3 k A / m :  
1, tO = 0.02;  2, tO = 0.04;  3, tO = 0.06;  4, tO = 0.08;  5, tO = 0.1 

shear rate and with a decrease in field strength. On the one hand, in small fields at 
sufficiently large shear rates the susceptibility tends to the values corresponding to a 
completely destroyed structure, on the other hand, a field increase at a fixed shear rate 
results in susceptibility enhancement. It is quite reasonable to suppose that these changes 
in the susceptibility are initiated by those in the aggregates' sizes or their orientation 
towards the field and, obviously, are specified by some relationship between the magnetic 
and hydrodynamic forces. The dependences Xs = xs(~), based on concentration, are 
generalized at the given field strength by a single curve (figure 7) that indicates a similar 
type of structure changes are initiated by shear flow for all the MRSs tested. 

3.3. Rheological Characteristics 

In the experiments, a shear stress increment in a magnetic field Az = zn-TH=0 as a 
function of  shear rate has been determined for two magnetic field strengths (figure 8). The 
dependences Az = AT (~) are essentially nonlinear within a range of small shear rates. With 
an increase in shear rate, the quantity tends to some constant value defined only by field 
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Figure 9. Shear stress increment in the magnetic field 
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strength and the concentration of the dispersed phase. In this case the dependence 
AT = Az (~p) is close to the linear one within the entire concentration range (figure 9). 

Relative variation of the shear stress increment, based on concentration, vs the shear 
rate for each field strength is generalized by one curve (figure 10). This linearity AT/zH=0 
with respect to tp, i.e. independent of the characteristic viscosity t/a - r/H=0/r/H=0tp of 
concentration, gives us grounds to think that the interaction effects of aggregates for the 
tested suspensions are absent or, at least, infinitesimal. 

Thus, the following important facts have been found experimentally. An MRS is a 
suspension of non-interacting anisodiametric "loose" aggregates with a susceptibility of 
ca. 5, whose geometric parameters depend on a relationship between the magnetic and 
hydrodynamic forces. 

4. MICROMECHANICS AND STRUCTURE OF MRSs 

The experimental results produced allow an MRS to be described in terms of the static 
theory of flow of diluted suspensions of magnetic ellipsoidal particles in an external 
magnetic field (Pokrovsky 1978). The main aspects of the theory are as follows. Within 
the framework of hydrodynamics, consideration is given to inertialess Newtonian fluid 
flow around isolated non-deformable particles. A macroscopic stress tensor of suspensions 
is determined from volume- and direction-averaged macroscopic characteristics. Here, the 
contribution of individual particles is additive. An observed increase, as compared to the 
carrying medium, in apparent viscosity of such suspensions is due to energy dissipation 
when a solid phase is in the flow. Quantitatively this phenomenon is specified by the 
volumetric concentration of the particles and their form parameter re = a/b, where a is the 
semimajor axis and b the semiminor axis of an ellipsoid. If the particles are polarized 
(magnetized) and contained in an external field then their orientation relative to the flow 
may contribute greatly to an average stress. The most pronounced effect is achieved when 
long thin particles are oriented across the flow (Chaffey & Mason 1965; Pokrovsky 1978). 

Based on these grounds and the experimental data obtained, the problem of the MRS 
description might be reduced to a trivial one if the MRS did not exhibit any principal 
difference from the traditional suspensions. In the case of MRSs we are concerned, not 
with rigid particles with fixed re but, with anisodiametric elements whose form parameter 
and orientation depend on the ratio of magnetic/hydrodynamic forces. In essence, the 
problem is reduced to searching for a dependence of re and an angle of orientation ct of 
the major aggregate axis towards the flow orientation of such prescribed quantities as the 
external magnetic field strength, the concentration and magnetic properties of the dispersed 
phase, the continuous medium viscosity, the shear rate and other flow characteristics. 

The following approach is suggested. From a balance of the hydrodynamic and magnetic 
torques affecting an aggregate in the shear flow a complex including all the prescribed 
parameters of the process is derived. Using the known formula of the theory of diluted 
suspensions, the characteristic viscosity as a function of this complex is found at different 
re. Since a continuous medium exhibits non-Newtonian properties in an MRS, a relevant 
description, in principle, should account for this. However, the theory of diluted 
suspensions with a non-Newtonian continuous medium is not sufficiently detailed to date. 
Hence, use is made of formulae for the Newtonian carrying medium but the complex 
"characteristic viscosity" includes apparent viscosity values at a given shear rate. This is 
permissible when the relative variation of the continuous fluid viscosity with shear rate 
along a particle is insignificant. Then the calculated characteristic viscosity values are 
compared to those experimentally obtained at the same S. The points of intersection of 
an experimental curve with a family of the calculated ones give re at the prescribed MRS 
deformation parameters. The angle of orientation ct is found from a balance of the torques 
acting upon an aggregate and then a dynamic MRS microstructure is defined completely, 
whose parameters allow macroscopic relationships between magnetic susceptibility, 
rheological properties, heat and electric conduction to be found. 
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Now we analyse in detail the theoretical and experimental results by using the suggested 
approach. Consideration is given to the diluted suspension Couette flow of ellipsoidal 
aggregates not affected by external forces. The long axis of the aggregates is much smaller 
than the gap width (each aggregate may be considered as a single one in an infinite fluid). 
The aggregate on the side of the external magnetic field oriented across the flow is affected 
by a force moment. For this suspension a tensor of excessive stresses is of the form 
(Pokrovsky 1978): 

~r = 2r/o• + qo~O a [ - p  <~. 13~)E + 2 ~ ' ~  + 2flD x (3 <~ ® ~> - ~) 

+E (<~ ® D~> + <D~ @ ~>) + Z <~ ® ~ x (~'D~)>] - ½N2 (<~ ® ~L~> 

+ <D_~ ® ~>) -- ½N <D_>; [11] 

where ® is a dyad of vectors; ~ is the unit vector of orientation of a symmetry axis of 
an ellipsoid; % the continuous medium viscosity; ID is the tensor of shear rates; [F is the 
unit tensor; q~a = ~P/~b is the volumetric concentration of aggregates ((p is the volumetric 
concentration of the dispersed phase and q9 is the degree of filling of the aggregate); N is 
the amount of particles per unit volume; 1]_ is the tensor of the moment of external forces; 
D is the rotational diffusivity; p, ~', fl, E, Z and 2 are the direction-averaged constants 
defined by the ellipsoid configuration (the values of these constants and D are given in 
appendix A). In sufficiently strong magnetic fields an ellipsoid is retained by the field from 
rotation and oriented at a fixed angle towards the flow. In this situation the moment of 
the magnetic forces L~. is equal to that of the hydrodynamic forces Mhydr. The latter is 
found from [ll] as 

161r 2 2 sin 2 ~ + cos 2 
Mhya~ = ~ qo $ab r, [l 2] 

A' + 2r~(1 - A ' ) '  

where 

A ' -  2 -  1 re+ ; 
r e - -  

A0 is given in appendix A. The moment of the magnetic forces is 

Lx, = ~,o[M × G], [13] 

where M is the magnetic moment of the ellipsoid and G is the effective magnetic field of 
the suspension. Using [4] we arrive at 

(, ,)  
Lx, = ~n#dqabZGyG: 1 + X, ny 1 + -x,n: [14] 

wherein Gy and Gz are determined by [7]. Equations [13] and [14] allow a functional 
relationship between the form parameter re, the angle at and the main characteristics of 
the process to be found: 

re 2 sin2~ + cosZ~ 1 4 
s = o; [15] 

2r~(1 - A ' ) + A ' G ~ G ~ ,  1 1 

1 + xan_- 1 + Kanv 

wherein 

P0 x, He: 
S = - -  and G;=IGi t /H  e. 

~0~ 

The complex S comprises all the given parameters of pure MRS shear flow in an external 
magnetic field and in the physical respect it represents a ratio of the characteristic magnetic 
and hydrodynamic moments of forces affecting the ellipsoid. 

In the process scheme under consideration the assumption that the ellipsoids are fixed 
at a definite angle towards the flow is realized provided S > Scr. This is related to a 
dependence of Mhydr and Lx, on the angle of orientation u (figure 11). At fixed Mhydr, the 
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Figure 11. Magnetic (L~,) and hydrodynamic (Mhydr) torques vs the angle of orientation. 

situation is as follows. Depending upon the external magnetic field strength, the L~, curves 
may intersect that of Mhya~ at two points (1), tough at one point (2) or have no common 
points (3). In the first case stable equilibrium of the ellipsoid is achieved only at point A. 
The second case is responsible for a minimum field which still prevents the ellipsoid from 
rotation. In this case the equilibrium angle is a minimum (point C) ct = a%. In the third 
case the equilibrium is not attained and the ellipsoid is rotating in a shear flow. A 
relationship between ~cr and the prescribed parameters may be found from the solution 
of the following system of equations: 

• 2 Mhyd~(U, re, r/0'~)l . . . . .  = Lx,(u, re, /~a HDI===, 

d M d L 
--hydrda ~ . . . .  - da-X' ,=,or t [16] 

implicit form states the This system is easily reduced to one equation which in an 
relationship between ~cr and re as 

(r z _ 1) (BI + B2 cos 2~) sin 2 2~ - 2 (r ~ sin 2 ~ + cos 2 ~) (B2 + Bl cos 2~ + B2 sin 2 ~) = 0; 

,B 1 1 ~ _ =-~(AIA3 + A:A4) and Bz ~(A2A4 A,A3). [171 

The coefficients AI, A2, A3 and A4 are given by [8]. For the flow of suspensions of rigid 
polarizing particles in an external field the following conditions has been previously 
obtained: 

~cr = arccot G. [18] 

The solution of[18] does not satisfy [17]. This is due to the fact that a field in the suspension 
has been prescribed in the work by Shulman et al. (1977). In our case this is determined 
by the method of a self-consistent field and, therefore, it is a function of the angle of 
orientation of ellipsoids. Using a known value of Ctcr from [15] we find S , .  

For the Couette flow an expression for the characteristic viscosity follows from [11]: 

[ ~ / ] _ q - q 0 _  (~_r~--r2eA ' - ¼ A ' ) ( r  2 - 1 )  
~lo~O, (r~ 3 , 2 2r~A ' A ') sin22ct 

- -  ~A )(2r e -- + 

(2-- A')(r~-- 1) 
-t cos 22ct 

(3A' - 2)(2r~ - 2r~A' + A') 

2 ( r ~ -  i)cos2~ r~+ 1 
2r~-  2rZA ' + A '  2r 2 -  2r~A" + A ' '  [191 
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Figure  12. Characteristic viscosity vs the parameter S for H = 24 k A / m  (points 1, 3, 5, 7, 9) and  
H --- 35.3 k A / m  (points  2, 4, 6, 8): • © ,  ~o = 0.02; • A ,  ~o = 0.04; + x ,  ~o = 0.06; [ ]  I ,  q~ = 0.08; 

~ ®,  ~0 = 0 . 1 .  

When deriving [19] account has been taken of 

~0a 
N = - -  

u 

(v = ~nab 2 is the ellipsoid volume). The desired dependence [~/] =f(re, S) is obtained from 
[19] and [15] by eliminating a > ~. .  

The next step is the determination of re = re(S). For this purpose the calculated 
characteristic viscosity values are compared with the experimental data produced for an 
increase in relative MRS viscosity in a magnetic field. Both in the calculations and 
experimentally we determine r / . -  ~/.=0/r/.~0~o, where r/. is the apparent viscosity of the 
suspension in the field while t/u= 0 is the same outside the field. This enables one to take 
account of  the effect of the rheological properties of the continuous medium. Nor- 
malization is performed with respect to the volumetric concentration of the dispersed phase 
but not with respect to the concentration of  aggregates ~o., since the former is prescribed 
in the experiments. Figure 12 shows the measured characteristic viscosity vs the variation 
of the prescribed parameter of  the process, i.e. its dependence on S. Correlation of all the 
experimental points with a single curve confirms the validity of using S as a governing 
parameter. The points of  intersection of the experimental curve ~/u- r/. = 0/~/. = 0~o = f ( S )  
with those calculated for different re give re = re(S) (figure 13). Here, the branching of the 
concentration curves is attributed, in the first instance, to the influence on the effective field 

6 0  -- + 

5 0  

4 0  

~-®30 

2 0  

1 0  

0 I I L I l I I l L  I L j i I I I I ] 
102 103 104 

S 

Figure  13. Pa ramete r  r e vs complex  S: l, ~o = 0.02; 2, ~o = 0,04; 3, ~o = 0.06; 4, rp = 0.08; 5, ~o = 0.1. 
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F i g u r e  14.  T h e  e f f e c t  o f  t h e  e x t e n t  o f  f i l l ing  o f  t h e  a g g r e g a t e  o n  r e = r e ( S ) :  l ,  ~0 = 0 .6 ;  2, ~o = 0 .5 ;  

3, ~0 = 0 .4 .  

in the suspension. As follows from [7] an increase in the concentration results in a decrease 
in the effective field strength of  the suspension. This decreases the magnetic torque and, 
therefore, r e and ~. The departure of  real MRS structure from a theoretical scheme is 
inevitable. For instance, the influence of  such a problematic factor as the extent of filling 
of an aggregate with particles q~ is shown in figure 14. In the calculation of the present 
curves it has been taken as equal to 0.4, 0.5 and 0.6, respectively although re proved to 
be almost independent of q~, some branching of  the curves took place and was comparable 
to that observed above. Henceforth, ~ was taken equal to 0.5 and, respectively, xa = 5. 
Figure 15 shows the dependence of the angle of  orientation c( on S, found by the known 
re values. With an increase in S the aggregates turn in the field direction but only to some 
definite angle. With a further increase in S this angle practically remains the same and the 
apparent viscosity growth observed seems to be due only to an increase in re. This moment 
will be discussed in detail below. In addition to the data for the concentrations prescribed 
in the experiments, figure 15 displays the calculated dependence ~ = ~((S) for a very diluted 
suspension with ~0 =0.0001.  The dependence is in immediate proximity to the curve 
c( = c((S) for the MRS with ~o = 0.02, i.e. the smallest-concentration system among those 
tested for which the condition prescribed by the theoretical model is fulfilled most 
completely. On the whole, the experimental and calculated data are in fair agreement. This 
conclusion is also verified by proper coincidence of the experimental dependences 

9 o ~  

1 

x ~  ~ 2 8o 

70 

5 0  I I I I I I I [ ]  I I I I I I I I I  
108 103 104 

$ 

Figure 15. Angle of aggregate orientation vs S:  ] ,  (# = 0.02;  2, ~ = 0 .0001;  3, q) = 0.04;  4, q) = 0.06;  
5, (p = 0.08;  6, q) = O. 1. 
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Figure |6. Magnetic susceptibility of the MRS vs S: 1, q~ =0.1; 2, q~ =0.08; 3, q~ =0.06; 
4, ~ = 0.04; 5, q~ = 0.02. - - - ,  Theory; • O • A +, experimental. 

~s = Ks(S) with those calculated by the relation re = re(S), found from independent 
rheoiogical measurements and by [5], [7] and [15] (figure 16). 

Of some interest is the analysis of the mechanical behaviour of  an MRS in a limiting 
case of large S, i.e. at great fields or small shear rates. When re >> 1 but 2a is much less 
than the gap width, an expression for coefficient A'  in [19] for the characteristic viscosity 
is reduced to the form 

and [19] is simplified and becomes 

In re 
A'  = 1 - ~ [20] 

r e 

2r 2 
[t/] -~ In re  [21] 

An analogous limiting transition in [15] gives 

2r e 1 + tq/2 
S -~ [22] 

lnr~ ~'K./2 ' 

where 

/z 

From [21] and [22] it follows that 

- e'q~0 ~ S. [23] 
q q0 

qo~ 1 + ~¢,/z 

Multiplying term by term [23] by ~ we arrive at the following rheological equation: 

Ka 

2 
z = ~lo7 + o~'Sq~q~, - - ;  [24] 

K~ 
1 + - -  

2 

o r  

2 

~" [25] z = ~/0'2 + #0H2tpa ct' 2 + K," 
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As has been shown earlier, at great S the angle of  orientation of the particles asymp- 
totically approaches some constant value (figure 15). In this case [25] coincides formally 
with the Shvedov-Bingham equation, known in rheology for viscoplastic materials, 

= r/~ + ~0. [26] 

However, in the physical sense, the second terms in [25] and [26] are quite different. In the 
first case one is concerned with the constants of mechanical energy dissipation over an 
aggregate (an increase in ~ is followed by a corresponding decrease in re), while in the case 
of a conventional viscoplastic medium ~o indicates the limit of structure strength. 

5. P R O P E R T I E S  OF THE S T R U C T U R A L  E L E M E N T S  OF MRSs 

The complex S, containing all the prescribed external parameters, as well as the relations 
obtained above, with the help of S, are valid only for shear flow. Their possible use in 
other types of flows, e.g. in extension flows, requires the additional description of the 
intrinsic aggregate properties of the flow, specifying its strength. 

Thus, consider the forces affecting an ellipsoid in shear flow. The stresses over its surface 
in a system of coordinates related to it (figure 4) are written as (Jeffery 1922) 

G =  - P o P ~ + ~  G ~ + C ~  -4qoP(eoA + flo B + 7oC) 

and [27] 
( z a. = -poP~Z + ~8q°P \AZ+G'a / -4q°P(~°A  + f l ° B + 7 ° C ) a  7 

where P is the distance between a tangent at the point (y ,z)  and the origin of the 
coordinates, 

( y2  z2"~ - ,/2 
e = t , V  + ' 

P0 is the hydrostatic pressure and b = c, ~t 0, fl0 and ?0 are the elliptic integrals in appendix 
A; A, B, C, G and G' are given in appendix B. For the most interesting case of large r e 
(strong magnetic fields) the elliptic integrals allow a simple representation. Here the stresses 
are of the form 

y 8rloP['~cos2~'+l 2~ sin2~' a2 ) ~ sin2~' y 
G=-P°P~+a-~c2~-4  2 ~ n ~ + i  za 21nre_l-~Sya + 3 r / 0 P Z l n G _  1~5. 

and 
z 8r/0P 

a._ = -poP ~ + --ac 2 
sin 2c~' ~ 2 in re cos 2~'  - 1 "~ ') sin 2~'  z 

1221nre- l za + 4 2 1 n G + l  yaj+-~rloP21nre_ l c 2. 

[281 

Analysis of  [28] shows that in the case under consideration (re >> 1) the stress a = ~ + a 2 
attains its extreme value at the point z = 2, defined from the solution of the transcendental 
equation 

[2BC cos 2q - (A 2 + B z - C 2) sin 2q](cos2 q + r~ 2 sin2 q) 

=G sin 2q [(A2 + B2 - C2)cos: q + CZ + BC sin 2q ], [29] 
where 

q = arc cos 2, 
2qo#P cos 2ct' + 1 

c 2 In r e + 1 

2 sin 2ct' 
B = ~-~c2 t/o~ 2 in G _  1' 

2~o~P 2 In re cos 2~' - 1 
C = - -  

c 2 2 lnr  e + i 
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and 

P = a [22 + r~(1 - 22)]-1,.2. 

Solution of [29] for c¢ 1 ~ 0.1, re ~ 1, yields 

a cos e '  In re 
8r  3 

Then 
2 

re 

Since 

then [34] is equivalent to 

B~ 2nR 2 R 
rmag n - . [31]  

/~0/~a 3~b A 

The hydrodynamic "cutting" force per particle, according to [30], is 

r~ 
= - - .  [321 Fhydr 2nR27q°In r e 

For sufficiently large r e the demagnetizing factor along a major axis (according to [5]) is 
zero, hence H a = H e and B a =/~0/~aHe. In the equilibrium state the following relation holds: 

Fhydr = KFmag n . [33] 

Quantity K in [33] is an effective coefficient which depends on: (1) overestimation of  the 
magnetic force defined by [31] which is valid only at A ,~ R; (2) underestimation of the 
hydrodynamic force because of the effective particle area in [32] being chosen as equal to 
xR2; (3) the impossibility of  the exact determination of the friction coefficient between the 
particles. From [31]-[33] we find 

r~ r/0 ?)3~b A 
In r e g/.tOl~aH ~ R ~ 1. [34] 

/2oKaH~ 
S - - - -  

r/o~ ' 

r~ 1 K R ( G  + 1) 
- - const. [35] 

In r e S Ax~3~b 

Relation [35] has been verified experimentally. Figure 17 displays 

1 
r~ ln re~  

As a result we get 

= - - .  [30] O'ma x O" I~=a -~ G'b=a -~ 2r/0~ In r e 

Equation [30] determines the stress of aggregate poles resulting in a cut in "excessive" 
particles which are held by the magnetic forces acting between the particles. Now we shall 
try to define them. An interaction force between particles Fmagn at a distance A from each 
other is related to the magnetic energy density Wmag . by 

Fmagn = Wmagn 
A 

The magnetic energy density inside an ellipsoid is Wl = B~/2/ta/,t0 (#a is the magnetic 
permeability of the aggregate and B~ is the magnetic induction inside the aggregate). The 
energy per particle of radius R is 

B2a 2rcR 3 

#o#~ 30 
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17. Plot of r2dlnr=S vs S: 1, ~p =0.02; Figure 18. Reduced first difference ofnormal stresses 
2, ~o = 0.1. vs complex S: 1, q~ = 0.0001; 2, ~o = 0.02; 3, ¢ = 0.04; 

4, ~0 = 0.06; 5, ~o = 0.08; 6, ~p = 0. I. 

as a funct ion of  S. Here  use has been made o f  data  f rom re = re(S). As in seen from figure 
17, at sufficiently large S, i.e. at re ~> 1 when [32] is valid, this complex is constant.  On the 
other  hand,  [22] and [33] suggest that  the angle between the long axis o f  the ellipsoid and 
the field direction is 

~t = K R 2(x.  + 2)(x. + 1) [361 
A 3q~x. ' 

i.e. it is constant  at the prescribed M R S  parameters.  Besides, because of  the small gap A 
between the particles the angle ~' is small. In terpreta t ion o f  the experimental  data  (figure 
15) presented above has produced the same results. It allows theoretical estimation o f  the 
M R S  structure parameters  (re and 0~) for  any type o f  flow differing from pure shear flow 
(for instance, for  extension or  at entrance regions). For  this purpose it is sufficient to write 
a condi t ion of  equali ty of  the moments  of  the forces acting upon the ellipsoid and that  
of  the forces equality [33]. 

6. M A C R O S C O P I C  R E L A T I O N S H I P S  

Detailed informat ion on the structure allows determinat ion o f  the whole series o f  
physical propert ies o f  MRSs.  Thus,  having re = re(S) and using [11] for  the tensor of  excess 
stresses one may obtain the dependences of  all the rheological characteristics upon the 
complex S, namely: 

(a) the first difference of  normal stresses (ay,y, - ~r:,:,) 

ay,y, - a:,z, 2 sin 4~ 
~pr/H=0~ = (Z -- /~2) ~ +/~ sin 2~; [37] 

(b ) the second difference of  normal stresses ( a , , : , -  ax,x,) 

a=':' - ax'x' - Z 22/~2 sin 2~ cos2 ~ [E +/~ (2 - 1) ~ ] ;  tpr/.= o~ [381 
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Figure 19. Reduced second difference of  normal  
stresses vs complex S: 1, ~o = 0.0001; 2, ~o = 0.02; 
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Figure 20. Degree of  asymmetry  of  shear stresses 
vs S: 1, ~o=0.0001; 2, ~o=0.02;  3, ~0=0.04; 

4, ~0 = 0.06; 5, q~ = 0.8; 6, ~o = 0.I.  

(c) a degree of asymmetry of shear stresses ¢ which is attributable to superposition of the 
extremal moments ay,z, - az,/ = Lx, 

¢ _ a,,/ 1 + q~ [~ + ½(e +/32 - 36) + ¼(Z - 2/32) sinZ2~] 
ay,:, 1 + (p[~ +½(e +/32 + 36) - [1  cos2c~ +¼(Z -2/32)sin22~] ' [39] 

where 6 =/3/32. 
The constants p, 2, Z, e are listed in appendix A. The relation for mechanical energy 

dissipation as in the case of "symmetric" fluids is of the form 

O = ay,:, ~,. [40] 

The influence of the complex S on the enumerated characteristics is presented in figures 
18-20. It should be noted that at large values of S one may expect negative O'z.y. 

6.1. Strength of the Structure Elements of  MRSs  

The case of the existence of small shear rates and large fields is possible when aggregates 
are so long that they overlap the entire flow section from the fixed wall to a movable one, 
thus forming peculiar bridges (figure 21). The movable wall entrains neighbouring particles 
while at the opposite end of the bridge they are held by the fixed wall. Thus, the bridge 
stretches and particles move away from each other. Because of the very small velocities, 
the hydrodynamic forces may be disregarded. The problem is reduced to the determination 
of the additional shear stress necessary to overcome the magnetic attraction of the forces. 
A similar problem for electrorheological suspensions has been considered previously by 
Shulman et al. (1977). In our case the attraction force for the particles amounts to 

rc~r~Zo~ 2mR 
F =  2--~-~ ' [41] 

where/~r is the penetration factor of the dispersed medium, ~m the magnetic potential drop 
in the gap and A(x) is the distance between the particles. The additional impulse due to 
the bridge elongation is 

1 fo '*r P = - F sin c¢ dx, [42] 
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Figure 21. Calculation scheme. 

V / ~ 2 v  is the lifetime of the bridge under the assumption that it breaks when where T 
particles move away from each other for a distance of the order of their radius, v is the 
velocity of the wall motion. Introducing N, the amount of bridges per unit area of the wall, 
we may determine the increment in shear stress due to elongation: 

P . N  
A r -  

T 

With regard to [41] and [42], and taking into consideration that 

A(x) = Amin-~ ~ - i +  x2 - h 
n 

(n is the number of particles in the bridge and Ami . is the distance between the particles 
when the bridge is perpendicular to the plates), we derive 

AT = ~#°/'tflP2mR ./I N 2i, [43] 
h 

where 

- - - - a  

l = l n  2 -  ( a = l  Amhn'n ) 
1 - a  

herein Am~, is the initial distance between the particles. For the analysis of [43] it is more 
convenient to express N in terms of the volumetric fraction of the particles: 

3~o {n=~--~ . 

Under the assumption that the gap between the particles is planar we find the drop in the 
magnetic potential to be 

He2R 

Ipm "~ ~2r Amin, [44] 
I + - -  

#f2R 

where #r is the particle material permeability. As a result we arrive at the following 
expression for the increase in shear stress due to the elongation of bridges: 

3Iq~ 2/" #r2R "~ [45] 
.A'r = ~ / . t 0 # f H e [ k l  + 

The quantity Ar determined by [45] for ~o = 0.1, He = 20 kA/m, for carbonyl iron 
R-10-based MRS proved to be equal to ca. 60 N/m 2 and is in a fair agreement with the 
experimental results, Ae,p = 50 N / m  z produced at shear rate ~ = 0.3 s -I. 
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APPENDIX A 

3T a2O~o + b2~o 
D - - - -  

161rqo a 2 + b 2 , 

1 tt 

4 / t? 0 3ab eoflo [2(e~ B~) + 3ab2(eoe~ floflo)], 

Ot - -  

( .  = 

O~ o 

ab 4 , 

4 2 

(a 2 + b2)ab2fl~ ab4ot~ ' 

2 ~  8 2 
4 t . ab ~oflo ab2( a2 + bz)fl~ ab4°~'o 

a 2 _ b  2. 
2 =  a2 + b 2' 

where Tis the absolute temperature and ~0, ct~, ct~;, fl0, fl~ and fl~' are the elliptical integrals 
which in the case of an axisymmetric ellipsoid are analytically presented as follows: 

fo ~ dx 1 ( 2 ) ,  :to = (a 2 + x)3/2(b2 + x )  2 - - b3(r~ - 1) A0 + 

fo ~ dx  1 ( ~ )  70 = flo = (a 2 q- x)l/2(b 2 Jr- x )  2 = b3(r~ - 1) + re , 

;0 ' ( 
dx r e 

;o ax ( flo = (a 2 + x)3/2(b2 + x)  2 = a3b2(r 2 _ 1) 2 1 + ~- + , 
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and 

,, fo ~ x d x  2r 2 /'r~ 1 4r2--1 ) 
ct o =  ( a 2 + x ) l / 2 ( b 2 + x ) 3 - a b 2 ( ~ - _ l ) 2 L 4 - + 8 +  l~G-G A° , 

f; ( ) fl~= xdx  2r~ 3 2r~+l  
( a  2 + x)3/E(b 2 + x )  2 - ab2(~e ---- 1) 2 2 4r¢ A° 

1 r e -  ( r  2 - -  1) 1/2 

X o = (re2 _ 1)1/2 I n  re + ( r  2 _ 1)1/2 , 

APPENDIX B 

1 2~'~ -fl~b - y~6  
A =  

I t  f t  t l  t t  Ip vt  ~ 

6 floYo + 7otto + ~oflo 

1 2fl'~b - 7'o'E -- ct'~t 
B =  

6 A ' 

A = f l o w  + y;;.~' + ~;;flg, 

G = ?oq - a2fl0q G' = ~oq + C2fl(~ 

2fl~(C27o + a2~o) 2fl~(C27o + a ~o) 

. ~ ~ .  
f lo=?~,  fl~=7o, ~ =  ~sin2a, /~=0, ? = - ~ s , n 2 ~ ,  

=~cos2~  and t / -  2" 

1 27ge - ~ , ' a  - f l ag  
C = -- 

6 A ' 


